
WAX9 Application Developer’s Guide

A guide for application development using the WAX9 platform

Page 2 of 22 www.openmovement.co.uk

Contents

WAX9 Application Developer’s Guide ... 1

A guide for application development using the WAX9 platform 1

Contents ... 2

Reference Tables .. 3

Introduction ... 4

Control and Interface .. 4

RFCOMM Control Interface ... 4

Bluetooth Low Energy Attribute Control ... 4

Common Initial Issues .. 5

LED Indicator ... 5

USB or Charging mode .. 5

Not Charging .. 6

Error Codes .. 6

Serial Data Output .. 6

Single Sample .. 6

Text Stream .. 6

Binary Stream ... 7

Serial Commands Summary .. 7

Terminating Commands .. 8

Group-able Commands... 8

All Settings Output Print Format .. 9

Sensor Settings ... 10

Other Variables .. 11

Data Mode Setting ... 11

Sleep Mode Setting ... 11

Low Energy Connections ... 12

The Attribute Protocol .. 12

The WAX9 Attribute Profile .. 13

Attribute Protocol Communication .. 14

Device Control .. 15

Data Output Format ... 17

Channel Contention Issues .. 17

Data Conversion ... 17

Page 3 of 22 www.openmovement.co.uk

Battery .. 17

Temperature... 18

Barometric Pressure .. 18

Accelerometer .. 19

Gyroscope .. 20

Magnetometer .. 20

Upgrading Firmware .. 21

Support ... 21

Open Source .. 21

Acknowledgments ... 22

Disclaimers .. 22

Reference Tables

Table 1. LED codes, USB connected .. 5

Table 2. LED codes, USB not connected ... 6

Table 3. Error LED codes .. 6

Table 4. Binary slip encoded data format (RFCOMM) ... 7

Table 5. Terminating commands .. 8

Table 6. Group-able commands (RFCOMM) .. 9

Table 7. Sensor settings (rate) command .. 9

Table 8. Settings output response format ... 10

Table 9. Valid sensor setting values .. 11

Table 10. RFCOMM data mode values... 11

Table 11. Sleep mode settings ... 11

Table 12. Bluetooth SIG assigned attribute UUIDs in the WAX9 profile 12

Table 13. Attribute protocol services on the WAX9 .. 12

Table 14. UUIDs of the values used in the WAX9 profile 13

Table 15. Summary of the WAX9 attribute profile .. 14

Table 16. Enumerated command input for LE connections 16

Table 17. Data output format for LE connections .. 17

Table 18. Meta data output format for LE connections 17

Table 19. Conversion of accelerometer values ... 19

Table 20. Conversion of gyroscope values .. 20

Page 4 of 22 www.openmovement.co.uk

Introduction

This document describes the interface protocol between the host application and
a WAX9 wireless sensor. It is written to help the software developer quickly gain
access to the device features and to answer the common questions that are asked
when interfacing to a WAX9.

Control and Interface

After the device has been charged and disconnected from the USB cable for the
first time it will quickly become discoverable as a Bluetooth device called
WAX9-XXXX where XXXX is the device identifier (device id). If the device id is left
as its default setting then the XXXX becomes the last 4 hexadecimal characters of
the Bluetooth media access control (MAC) address. The default pairing code for
standard Bluetooth pairing will be “0000”. For low energy (LE) connections, the
device is in 'Just works' configuration and will accept one connection at a time.
Simultaneous standard Bluetooth and LE connections are not permitted at the
time of writing; Future firmware releases may support additional features.
Future releases are planned to add secure pairing for LE connections as well.

RFCOMM Control Interface

Control of the device can be performed over an RFCOMM channel which can be
established by pairing to the device and opening a port. Each operating system
(OS) offers many different options for using communication (COM) ports,
however, it is recommended to initially connect to the device using a terminal
program such as hyperterminal to familiarise the user with the interface (other
options for terminals). Some of the OS’s application programmers interfaces
(APIs) used to control COM ports may not function as expected using RFCOMM.
The terminal application may ask for baud settings, these are not applicable to
RFCOMM ports and the default settings should be used (usually 8 bit, no parity, 1
stop bit or abbreviated “8N1”). Open connected to the device, type a command
such as “settings<CR>”; where <CR> is the carriage return character, usually the
return key. The device will respond in plain text to display its current settings.
“sample<CR>” will display the sampled sensor data in the format described in the
data output section.

Bluetooth Low Energy Attribute Control

The Bluetooth low energy (LE) mode of the device shares some of the
characteristics of the standard RFCOMM interface by exposing a serial
communication channel for commands and responses. The LE control mode also
allows direct manipulation of the device settings and lacks the ability to stream
raw text data (due to the reduced bandwidth). The profile of the device can be
freely explored using an LE attribute explorer on a LE enabled device. Skip to the
LE communication section to get started quickly with the LE modes of operation.

http://www.hilgraeve.com/hyperterminal/
http://helpdeskgeek.com/windows-7/windows-7-hyperterminal/

Page 5 of 22 www.openmovement.co.uk

Common Initial Issues

Device not visible: The devices are shipped in hibernate mode and are not
discoverable. Connect to the USB cable and charge the device, on disconnecting
the device will be discoverable.

Cannot pair with device: There may be an active connection already formed that
was not closed during device discovery. Briefly connect to USB and disconnect
again to reset the device; then retry. For LE pairing issues, see the LE
communication section.

Cannot open a COM port: Firstly, view the device using the OS (e.g. device
manager) to confirm that the OS has successfully installed the device and
designated it a COM port number. Select the assigned COM port number using
the terminal program and then connect. If this fails, try another terminal
program; some terminal programs are not compatible with RFCOMM; try
teraterm, a free open source terminal project.

No response from device: For some OSs, the device may have formed more than
one COM port for the device to expose the RFCOMM control channel; the data
channel is usually port with the lower number. Also, check the behaviour of the
return key for the terminal used; it may send a line feed (<LF>) instead of <CR>.

LED Indicator

The WAX9 has a tri-colour LED indicator capable of several colour outputs. If a
transparent packaging option is chosen, the indicator colours and flashes may be
used to identify the modes of the device an aid in device identification. There are
two main modes of operation which each have different indicator outputs.

USB or Charging mode

The following table describes how the device indicates its status when connected
to a charger or host PC.
Indicator LED Mode Note

Flashing red Charging , pre-charge Battery too low to bootload

Solid colour red Bootloading active Do not disconnect

Flickering Bootloading active Do not disconnect

Solid colour red Charging, battery <10% Gradual red to green change

Solid colour yellow Charging, battery >10% Gradual red to green change

Solid colour green Charging, battery >80% Gradual red to green change

Flashing green Charging, battery full Fully charged

Table 1. LED codes, USB connected

http://en.sourceforge.jp/projects/ttssh2/releases/

Page 6 of 22 www.openmovement.co.uk

Not Charging

The following table describes how the device indicates its status when not
charging.
Indicator LED Mode Note

Flashing red Battery empty Not discoverable, charge

Solid yellow Starting Startup takes ~1 second

Flashing yellow Device discoverable Low duty cycle flash at 2 Hz

Flashing blue Device connected Low duty cycle flash at 2 Hz

Flashing blue fast Device streaming Flashes at data output rate

Flashing green Device hibernating Flashes once per 4 seconds

Other colours LED override set LED command issued

Table 2. LED codes, USB not connected

Error Codes

LED error codes are as follows.
Indicator LED Mode Note

Flashing magenta Radio fail ~4s, wrong firmware or damaged

Flashing cyan Sensor fail ~4s, sensors damaged

Magenta 3s + reset Device exception Please send bug report

Table 3. Error LED codes

Serial Data Output

The device has three serial data output modes explained in this section. The
streaming modes use a transmit threshold option to reduce channel congestion
and interference resulting in less dropped packets; it is set by the threshold
command (e.g. threshold=128<CR><LF>). The threshold stops the device
transmitting until either the data stored in memory is more than 1 second old or
there is at least 'threshold' bytes to send. This results in fewer transmitted radio
packets at the expense of longer data latency; it is disabled by default (zero).

Single Sample

This is the response to the sample command and is always in text mode
including a comma separated value (CSV) list of the variable positions. This
mode is intended for sparsely point sampled data or debugging; This mode is
also available using the LE serial port connection.
e.g. DATA: N,Ax,Ay,Az,Gx,Gy,Gz,Mx,My,-Mz,Batmv,Temp0.1C,PresPa,Ia<CR><LF>
 0,101,-25,4050,12,-61,37,-2078,187,3698,3890,205,100257,0<CR><LF>

Text Stream

The text stream data output is in the same format as the single sample (without
variable position list) and is in plain text (UTF-8). The data rate is set by the
RATEX variable in samples per second (default 50 Hz). The sample number (first
variable in the list) should be used to identify if samples are missing (e.g. due to
the device going out of range briefly). The default behaviour (DATAMODE
variable is zero) is to only transmit the extended data (battery, temperature,
pressure and inactivity count) when it is sampled; approximately twice per
second. Text streams are not available for LE connections.

Page 7 of 22 www.openmovement.co.uk

e.g.
Normal: 0,101,-25,4050,12,-61,37,-2078,187,3698<CR><LF>
Long: 0,101,-25,4050,12,-61,37,-2078,187,3698,3890,205,100257,0<CR><LF>

Binary Stream

This is the recommended operating mode for high performance systems. The
sensor data is transmitted in raw binary using slip encoding (RFC 1055), this
allows the framing of the data to be extracted. Binary stream mode offers greatly
reduced channel usage and hence higher sample rates. LE connections use a
different binary format as described in the LE section of this document. The
binary format is:

Byte * Value hex** Note

0 0xC0 SLIP END

1 0x39 Ascii ‘9’

2 0x01 or 0x02 Packet format

3+4 0xXXXX Sample number

5+6+7+8 0xXXXXXXXX Sample timestamp***

9+10,
11+12,
13+14

0xXXXX,
0xXXXX,
0xXXXX

Accelerometer values,
16 bit signed integers,
order x,y,z

15+16,
17+18,
19+20

0xXXXX,
0xXXXX,
0xXXXX

Gyroscope values,
16 bit signed integers,
order x,y,z

21+22,
23+24,
25+26

0xXXXX,
0xXXXX,
0xXXXX

Magnetometer values,
16 bit signed integers,
order x,y,z

27+28**** 0xXXXX Battery voltage in millivolts

29+30**** 0xXXXX Signed temperature in 0.1˚C steps

31+32+33+34

0xXXXXXXXX
Unsigned barometric pressure in
pascals (Pa), see altitude conversion

27 or 35 0xC0 SLIP END

Table 4. Binary slip encoded data format (RFCOMM)

* Multi byte fields are ordered little-endian (LE) or least significant byte first.
** Bytes equal to slip codes are replaced with the RFC 1055 escape sequence.
*** Timestamps are in 1/65536 of a second.
**** For packet formats of 0x02 only, otherwise absent.

Serial Commands Summary

This section covers the serial commands that can be used to configure and
customise the device. All serial commands are text based, case insensitive and
terminated with a <CR> symbol. The user may also send a <LF> character which
will be ignored. Some commands using an RFCOMM connection can be
concatenated using the ‘|’ symbol (0x7C) to replace the <CR> in this case the
maximum command length is 64 characters. For LE connections, concatenation
is not possible, the command length must be 20 characters maximum and the
<CR> does not have to be added. However, LE connection may directly read and
write the settings controlled by these serial commands as described in the LE

http://en.wikipedia.org/wiki/Serial_Line_Internet_Protocol
http://tools.ietf.org/html/rfc1055
http://en.wikipedia.org/wiki/Atmospheric_pressure
http://tools.ietf.org/html/rfc1055

Page 8 of 22 www.openmovement.co.uk

section of this document. Some commands may cause the device to lose
communication with the host computer and stall the COM port, if the device
becomes unresponsive or un-connectable there are four options:

 The “clear<CR>” command restores default settings, the “reset<CR>”
command will reset the device and load these settings.

 Connecting the device to a charger or host using the USB will reset the
device and allow reconnection.

 Boot loading the firmware to the device again will factory reset the
device. This is covered in a preceding section.

 If the device will not reset to bootloader, leave it disconnected. An
internal timeout will reset it after approximately one minute.

Terminating Commands

These commands can not be followed by additional commands. It is assumed
that the text is followed by a <CR> after the arguments, the device will
immediately execute the command(s).
Command Action

"help"
Accepts no arguments

Prints all commands in capitals separated by "<CR><LF>"

"echo"
Accepts no arguments or "=0" or "=1" e.g. "echo=1<CR>"

Prints "ECHO: %u<CR><LF>" where %u is 0 or 1 depending on setting

"reset"
Accepts no arguments, preceding setting commands are lost

Prints "RESET:<CR><LF>", closes connection and resets

"sample"

Accepts no arguments

Prints two text strings containing the current sensor data, this
is detailed in the data output section of this document

"stream"
Accepts no arguments, can be preceded by settings

Will stream data if sample rate > 0 and sensors are enabled

"name"

Accepts either no terms or string to be used as the device name
e.g. "name=newname<CR>"

Prints "NAME: new name<CR><LF>"

Note that the device id will be appended to the Bluetooth name

"pin"

Accepts no terms or 4 digit number string to be used as the pin
code e.g. "pin=1234<CR>"

Prints "PIN: 1234<CR><LF>"

Table 5. Terminating commands

Group-able Commands

These commands may be concatenated into a single command up to 64
characters long total.
Command Action

"led"

Accepts "%d<CR>", -1 LED under normal device control, 0 - 7
is binary LED value to be set e.g. "led=3<CR>", 3 is binary
0b011, RGB LED is set to red=0, green=1, blue=1 yielding cyan

Prints "LED: %d<CR><LF>"

"device"

Accepts numbers 1-65534 to become new device id. 0 and 65536
are invalid and the device will adopt the last two bytes of
the Bluetooth MAC address (little endian) as its id on reset.

Prints all settings (see below format)

Page 9 of 22 www.openmovement.co.uk

"clear"
Accepts no arguments, sets all settings to defaults

Prints all settings (see below format)

"settings"
Accepts no arguments

Prints all settings (see below format)

"datamode"

Accepts number to become the new datamode setting, see
variable summary (unsupported modes will result in no
streamed data)

Prints all settings (see below format)

Command Action

"sleepmode"

Accepts number to become new sleep mode setting, see variable
summary (sleep mode 4 requires reset to latch)

Prints all settings (see below format)

"inactive"

Accepts numbers 3-65534 to become the inactivity count
threshold in seconds, see variable summary for sleepmode

Prints all settings (see below format)

"threshold"
Accepts powers of two up (0-512) to be the transmit threshold

Prints all settings (see below format)

Table 6. Group-able commands (RFCOMM)

Command Action

"rate"

Accepts 4 arguments "%c %u1 %u2 %u3" (space or comma
separated), see variable summary for valid ranges:

Variable %c %u1 %u2 (or omit) %u3 (or omit)

Output
rate

"x"
"0"

(or omit)
"0" New rate

Accel
setting

"a"
On = 1
Off = 0

Internal rate Sensor range

Gyro
setting

"g"
On = 1
Off = 0

Internal rate Sensor range

Mag
setting

"m"
On = 1
Off = 0

Internal rate "0"

e.g. "rate x 0 0 10<CR>" sets the output data rate to 10 Hz
e.g. "rate a 1 200 8<CR>" sets the accelerometer on with 200
Hz internal rate and +/-8g range.
e.g. "rate g 0|rate x 10|stream<CR>" (26 characters) turns
off the gyro and starts streaming at 10 Hz

Prints all settings (see below format)

Table 7. Sensor settings (rate) command

All Settings Output Print Format

Command Action

"WAX9, HW: %s, FW: %s, CS: %s <CR><LF>
ID: %u<CR><LF>"

%s Hardware version

%s Firmware version

%s Chipset (CC2564 / CC2560)

%u Device id

"NAME: %s, PIN: %s<CR><LF>"
%s Bluetooth name

%s Bluetooth pin

"MAC: %02X:%02X:%02X:%02X:%02X:%02X<CR><LF>"
XX:XX:XX:XX:XX:XX
Bluetooth MAC address

Page 10 of 22 www.openmovement.co.uk

"ACCEL: %u, %u, %u<CR><LF>"

%u 1 = on, 0 = off

%u Accelerometer rate (Hz)

%u Accelerometer range (g)

"GYRO: %u, %u, %u<CR><LF>"

%u 1 = on, 0 = off

%u Gyroscope rate (Hz)

%u Gyroscope range (dps)

"MAG: %u, %u<CR><LF>"
%u 1 = on, 0 = off

%u Magnetometer rate (Hz)

"RATEX: %u<CR><LF>" %u Output data rate (Hz)

"DATA MODE: %u%c<CR><LF>"

%u Output data mode

%c '!' only if setting
requires high power operation

Command Action

"SLEEP MODE:%u<CR><LF>" %u Sleep mode setting

"INACTIVE:%usec<CR><LF>" %u Inactivity timeout value

Table 8. Settings output response format

Sensor Settings

The sensors on the WAX9 are listed in the device datasheet, they are all digital
sensors with their own independent sample clocks. This makes synchronising
the sample point across all sensors impossible and can only be solved by two
solutions:
1) Allow each sensor to have its own stream and send packeted data over the

port separately. This makes synchronisation difficult since the sensors will
have slightly different sample rates (e.g. 101 Hz and 98 Hz) resulting in
changes of packet ordering on the channel. Secondly, if the samples are sent
sample by sample, each packet must also have a timestamp and identifier
resulting in a large additional data flow and potential channel contention.
Thirdly, interpolation must be used on the receiver side to re-synchronise the
streams before processing, thus adding latency and processing time.

2) The sensors can be configured to oversample at a higher rate than the sample
clock and are then re-sampled synchronously using a precision clock. This
offers very accurate sample rates, minimal signal latency and synchronous
sensor data; This is the method employed by the WAX9. The disadvantage is
that a timing error up to the sensor internal sample interval may be present.
E.g. If the accelerometer and gyroscope have internal sample rates set to 200
Hz and the output data rate is 100 Hz, a sample may contain accelerometer
and gyroscope sample up to 5 ms (1/200 Hz) old or up to 5 ms apart; For
some applications, it is necessary to use high oversample ratios to remove
this error at the expense of slightly shorter battery life. For some
applications, an under sample scheme can be employed to reduce the data
flow from that sensor (e.g. magnetometer defaults to 10Hz rate).

The sensors each have their own independent internal sample rates because of
the sampling scheme described above. The sampling rates may be independent
of the output data rate. This table summarises the settings available for each
sensor. Using variables outside this table will result in the default value being
chosen.

Page 11 of 22 www.openmovement.co.uk

Variable Values Effect

Accelerometer on 1 or 0 On or Off resp.

Accelerometer rate 12, 50, 100, 200, 400, 800 Internal rate Hz

Accelerometer range 2, 4, 8 Range in +/-g

Gyroscope on 1 or 0 On or Off resp.

Gyroscope rate 100, 200, 400, 800 Internal rate Hz

Gyroscope range 250, 500, 2000 Range in dps

Magnetometer on 1 or 0 On or Off resp.

Magnetometer rate 5, 10, 20, 40, 80 Internal rate Hz

Table 9. Valid sensor setting values

Other Variables

Data Mode Setting

The data mode setting determines the format of the serial data sent over the
RFCOMM channel. Sensor data is sent as text mode or slip-encoded binary. LE
connections use a different transmission format irrespective of the data mode.
The following summarises the currently supported sub-modes:
Value of datamode Data output format*

0
Ascii mode with batt, temp, pressure, inactivity
transmitted as they are sampled (~1Hz).

128
Ascii mode with batt, temp, pressure, inactivity
transmitted every packet.

1
Binary mode with ~1Hz batt, temp, pressure, inactivity
update. Packet types 1 and 2

129
Binary mode with continuous batt, temp, pressure,
inactivity update. Packet type 2 only.

Table 10. RFCOMM data mode values

* Not applicable to LE connections

Sleep Mode Setting

The sleep modes of the device allow significant power saving when the device is
not being used yielding longer battery life.
Value of sleepmode Behaviour

0
Highest power, allows slightly faster re-connects and
can be powered over USB instead of re-setting (once).

1 Normal mode, never hibernates, low power discoverable.

2
Hibernates after inactivity timer reaches setting
(inactive value) without movement being detected.

3
Hibernates after inactivity timer reaches setting
(inactive value) without orientation changing.

4
Hibernate upon disconnect until next USB connect, then
change to sleep mode 1. This is shipping mode also.

5
This is a test mode used during manufacture. If set,
connect and disconnect from the USB twice to exit.

Table 11. Sleep mode settings

Page 12 of 22 www.openmovement.co.uk

Low Energy Connections

The WAX9 can be accessed using the Bluetooth low energy attribute protocol.
This section summarises the attribute profile and its various features. The
attribute protocol is briefly described here.

The Attribute Protocol

In its simplest form, the attribute protocol describes a set of locations (handles)
and associates descriptions (<Characteristic User Description>), characteristics
(<Characteristic>) and client settings (<Client Characteristic Configuration>).
These are clustered into services (<Primary Service>, <Secondary Service>) of
which some are mandatory and some are optional. Each of the above fields in
<angled brackets> is known as an attribute and every attribute has a universally
unique identifier (UUID). The common UUIDs are assigned by the Bluetooth
special interest group (SIG) and are 16 bits. Custom UUIDs must all be 128 bits.
The following tables describes the WAX9 profile UUIDs; <angled brackets> are
Bluetooth SIG UUIDs and {curly brackets} are custom 128 bit UUIDs, [sqare
brackets are notes] and (normal brackets) show the flags field for
characteristics; Colour coding helps identify the main attribute types.

ATTRIBUTE UUID TYPE VALUE

0x2800 <Primary Service> Service type UUID

0x2801 <Secondary Service> Service type UUID

0x2803 <Characteristic> Value flags (8),
Value handle (16),
Value UUID (16/128)

0x2901 <Characteristic User Description> String (UTF8)

0x2902 <Client Characteristic Configuration> Alert setting (16)

0x2A00 <Device Name> String (UTF8)

0x2A01 <Appearance> Appearance (16)

0x2A05 <Service Changed> Range Start (16),
End handle (16)

0x2A27 <Hardware Version> String (UTF8)

0x2A26 <Firmware Version> String (UTF8)

0x2A19 <Battery State> Percentage (8)

Table 12. Bluetooth SIG assigned attribute UUIDs in the WAX9 profile

SERVICE TYPE UUIDs TYPE (follow <Primary Service>)

0x1800 <Generic Access Profile>

0x1801 <Generic Attribute Profile>

6E400001-B5A3-F393-E0A9-
E50E24DCCA9E

Custom service {Serial port}, compatible with this Android and
iOS application from Nordic Semi.

00000000-0008-A8BA-E311-
F48C90364D99

Custom service {Sensor data and command}

00000005-0008-A8BA-E311-
F48C90364D99

Custom service {Service settings and status}

Table 13. Attribute protocol services on the WAX9

ATTRIBUTE VALUE UUIDs TYPE PERMISSIONS

6E400002-B5A3-F393-E0A9-
E50E24DCCA9E

{Serial data input} WRITE NR*

6E400003-B5A3-F393-E0A9-
E50E24DCCA9E

{Serial data output} INDICATE,
NOTIFY

00000001-0008-A8BA-E311-
F48C90364D99

{Enumerated command input} WRITE, WRITE NR*

00000002-0008-A8BA-E311-
F48C90364D99

{Sensor data} accelerometer,
gyroscope, magnetometer

INDICATE, NOTIFY, READ

https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-attribute-profile
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF-UART-2.0-for-Android-4.3
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF-UART-App

Page 13 of 22 www.openmovement.co.uk

00000004-0008-A8BA-E311-
F48C90364D99

{Meta data}
altimeter, temperature, battery

INDICATE, NOTIFY, READ

00000006-** {Streaming} READ

00000007-** {LED} READ, WRITE, WRITE NR*

00000008-** {Sleep mode} READ, WRITE, WRITE NR*

00000009-** {Inact. threshold} READ, WRITE, WRITE NR*

0000000A-** {Sample rate} READ, WRITE, WRITE NR*

0000000B-** {Accel. on} READ, WRITE, WRITE NR*

0000000C-** {Accel. rate} READ, WRITE, WRITE NR*

0000000D-** {Accel. range} READ, WRITE, WRITE NR*

0000000E-** {Gyro. on} READ, WRITE, WRITE NR*

0000000F-** {Gyro. rate} READ, WRITE, WRITE NR*

00000010-** {Gyro. range} READ, WRITE, WRITE NR*

00000011-** {Mag. on} READ, WRITE, WRITE NR*

00000012-** {Mag. rate} READ, WRITE, WRITE NR*

Table 14. UUIDs of the values used in the WAX9 profile

* WRITE NR is write with no response, also known as write command
** The remaining UUID is truncated for readability - 0008-A8BA-E311-F48C90364D99

The WAX9 Attribute Profile

This section lists the attribute profile ordering with the handle numbers used.
However, most systems have an API to explore devices and discover services.
The handle numbers are liable to change in future revisions of the firmware, the
user should aim to use only the UUID values.
Handle UUID VALUE

0x0001 <Primary Service> <Generic Access Profile>

0x0002 <Characteristic> (READ) <Device Name>

0x0003 <Device Name> "WAX9"

0x0004 <Characteristic> (READ) <Appearance>

0x0005 <Appearance> 0x0000

0x0010 <Primary Service> <Generic Attribute Profile>

0x0011 <Characteristic> (INDICATE|READ|WRITENR) <Service Changed>

0x0012 <Service Changed> 0x0020,0xFFFF

0x0013 <Client Characteristic Cfg.> 0x0000, ignored value, read/writable

0x0014 <Characteristic> (READ) <Hardware Version>

0x0015 <Hardware Version> "1.0"

0x0016 <Characteristic> (READ) <Firmware Version>

0x0017 <Firmware Version> "3.3"

0x0020 <Primary Service> {Serial port}

0x0021 <Characteristic> (WRITENR) {Serial data input}

0x0022 {Serial data input} [up to 20 character input]

0x0023 <Characteristic User Description> "Serial input"

0x0024 <Characteristic> (INDICATE|NOTIFY) {Serial data output}

0x0025 {Serial data output} [response, as indications or notifications]

0x0026 <Client Characteristic Cfg.> 0xXXXX [Write: 0=Off, 1=Notify, 2=Indicate]

0x0027 <Characteristic User Description> "Serial output"

0x0030 <Primary Service> {Sensor data and command}

0x0031 <Characteristic> (READ) <Battery State>

0x0032 <Battery State> 0xXX [in percent]

0x0040 <Characteristic> (WRITE|WRITENR) {Enumerated command input}

0x0041 {Enumerated command input} 0xXXXX

0x0042 <Characteristic User Description> "Command:
SAVE=0|STREAM=1|RESET=2|LED=3|CLEAR=4|STOP=5"

0x0050 <Characteristic> (READ|INDICATE|NOTIFY) {Sensor data}

0x0051 {Sensor data} [see output data format section]

0x0052 <Client Characteristic Cfg.> 0xXXXX [Write: 0=Off, 1=Notify, 2=Indicate]

0x0053 <Characteristic User Description> "Data output"

0x0070 <Characteristic> (READ|INDICATE|NOTIFY) {Meta data}

0x0072 {Meta data} [see output data format section]

0x0071 <Client Characteristic Cfg.> 0xXXXX [Write: 0=Off, 1=Notify, 2=Indicate]

0x0073 <Characteristic User Description> "Pressure Pa (uint32), Temp x10C (sint16),
Battery mV (uint16)"

Page 14 of 22 www.openmovement.co.uk

0x0080 <Primary Service> {Service settings and status}

0x0081 <Characteristic> (READ) {Streaming}

0x0082 {Streaming} 0xXX [Streaming status on/off]

0x0083 <Characteristic User Description> "Streaming on/off"

0x0090 <Characteristic> (READ|WRITE|WRITENR) {LED}

0x0091 {LED} 0xXX [LED setting, see command section]

0x0092 <Characteristic User Description> "LED setting"

0x00A0 <Characteristic> (READ|WRITE|WRITENR) {Sleep mode}

0x00A1 {Sleep mode} 0xXX [Sleep setting, see sensor settings]

0x00A2 <Characteristic User Description> "Sleep mode setting"

0x00B0 <Characteristic> (READ|WRITE|WRITENR) {Inact. threshold}

0x00B1 {Inact. threshold} 0xXXXX [Inactivity val, see sensor settings]

0x00B2 <Characteristic User Description> "Inactivity timeout"

0x00C0 <Characteristic> (READ|WRITE|WRITENR){Sample rate}

0x00C1 {Sample rate} 0xXXXX [Sample rate, see sensor settings]

0x00C2 <Characteristic User Description> "Sample rate Hz"

0x00D0 <Characteristic> (READ|WRITE|WRITENR) {Accel. on}

0x00D1 {Accel. on} 0xXXXX [Accel. on/off, see sensor settings]

0x00D2 <Characteristic User Description> "Accel. on/off"

0x00E0 <Characteristic> (READ|WRITE|WRITENR) {Accel. rate}

0x00E1 {Accel. rate} 0xXXXX [Accel. rate, see sensor settings]

0x00E2 <Characteristic User Description> "Accel. rate Hz"

0x00F0 <Characteristic> (READ|WRITE|WRITENR) {Accel. range}

0x00F1 {Accel. range} 0xXXXX [Accel. range, see sensor settings]

0x00F2 <Characteristic User Description> "Accel. range g"

0x0100 <Characteristic> (READ|WRITE|WRITENR) {Gyro. on}

0x0101 {Gyro. on} 0xXXXX [Gyro. on/off, see sensor settings]

0x0102 <Characteristic User Description> "Gyro. on/off"

0x0110 <Characteristic> (READ|WRITE|WRITENR) {Gyro. rate}

0x0111 {Gyro. rate} 0xXXXX [Gyro. rate, see sensor settings]

0x0112 <Characteristic User Description> "Gyro. rate Hz"

0x0120 <Characteristic> (READ|WRITE|WRITENR) {Gyro. range}

0x0121 {Gyro. range} 0xXXXX [Gyro. range, see sensor settings]

0x0122 <Characteristic User Description> "Gyro. range dps"

0x0130 <Characteristic> (READ|WRITE|WRITENR) {Mag. on}

0x0131 {Mag. on} 0xXXXX [Mag. on/off, see sensor settings]

0x0132 <Characteristic User Description> "Mag. on/off"

0x0140 <Characteristic> (READ|WRITE|WRITENR) {Mag. rate}

0x0141 {Mag. rate} 0xXXXX [Mag. rate, see sensor settings]

0x0142 <Characteristic User Description> "Mag. rate Hz"

Table 15. Summary of the WAX9 attribute profile

Attribute Protocol Communication

There are several ways of obtaining data from and controlling the WAX9 using
the attribute protocol. This can be simply reading or writing the values directly
or using notifications and indications. Reading is always a request-response
transaction whereas writing can be preformed without a write confirmation
(WRITENR also know as COMMAND transactions). Reading and writing of
attributes allows variables much longer than the maximum data unit size to be
transferred reliably at the expense of longer transaction times.

The preferable method of streaming the sensor data is to use notifications or
indications initiated by the WAX9. Notifications are used for guaranteed data
flow and require a response, furthermore, there can only be one pending
notification at a time. The result is that notifications are not the preferred
streaming method unless low sample rates and guaranteed throughput is
required. If a sample time elapses while waiting for the indication response then
the pending sample is lost. Notifications are better for higher data rates as they

Page 15 of 22 www.openmovement.co.uk

require no response or acknowledgement and can be sent at any time. The
problem with notifications and indications is that the maximum data packet size
is restricted; the Bluetooth LE specification only guarantees a 20 byte payload to
be supported.

The serial port service uses WRITENR packets to the serial input (WAX9) and
NOTICIFATIONS for the serial output (from the WAX9). To receive these
notifications the user should write the value 0x0001 to the <Client

Characteristic Configuration> associated with the {Serial data output}, handle
0x0026. Notifications can not be polled for and this value must be set to receive
notifications of serial messages. For indications the value 0x0002 should be
written and to disable the serial output a value of 0x0000 is used. A value of
0x0003 enables notifications and indications, however, in the WAX9
implementation the indication flag has precedence. It should be noted that the
serial port service is not controlled, specified or recommended by the Bluetooth
SIG and is purely to facilitate transiting from RFCOMM to LE modes. The UUID
values used by Nordic Semiconductor in their LE UART program were used to
allow compatibility with their mobile phone applications.

The same <Client Characteristic Configuration> values are associated with the
{Sensor data} and {Meta data} attributes. Writing values of 0x0001 and 0x0002
will enable notifications and indications respectively in the same fashion as the
serial port service. It is suggested that notifications be used for sensor data and
indications or notifications be used for meta data depending on its importance.
In either mode, the same data format is always transmitted for each handle and
framing is unimportant due to the fixed packet boundaries.

Device Control

The user will likely control the device in LE mode using the dedicated variable
mappings provided in the profile. These settings are identical to those set by the
serial commands as summarised in the sensor settings section. The majority of
the settings (excluding inactivity timeout and LED) will not take effect until the
device receives a command to the {Enumerated command input} attribute. This
attribute should be written with a uint16 value as enumerated in the following
table; It is write only.

Command number Behaviour

0x0000
Save: Latches current settings, useful for new sleep mode
settings. Will stop streaming and sensors are turned off.

0x0001
Stream: Latches settings, powers on sensors and begins
streaming.

0x0002
Reset: Device will close Bluetooth connection and execute
a reset, any new settings are lost.

0x0003
LED: The current LED override setting is restored to
device control (-1). Will stop streaming and sensors are
turned off.

0x0004
Clear: The current settings are replaced with the
defaults and saved. Will stop streaming and sensors are
turned off.

Page 16 of 22 www.openmovement.co.uk

0x0005
Stop: Latches current settings, useful for new sleep mode
settings. Will stop streaming and sensors are turned off.

0x0006
Pause: The device stops streaming, sensors remain on and
sampling continues*.

0x0007 Play: Valid only after pause, resumes streaming*.

* Sample number continues to increment, new settings are not latched.
Table 16. Enumerated command input for LE connections

Page 17 of 22 www.openmovement.co.uk

Data Output Format

The following table shows the 20 byte data format for sensor data indications
and notifications.
Byte * Value hex Note

0+1 0xXXXX Sample number uint16

2+3,
4+5,
6+7

0xXXXX,
0xXXXX,
0xXXXX

Accelerometer values,
16 bit signed integers,
order x,y,z

8+9,
10+11,
12+13

0xXXXX,
0xXXXX,
0xXXXX

Gyroscope values,
16 bit signed integers,
order x,y,z

14+15,
16+17,
18+19

0xXXXX,
0xXXXX,
0xXXXX

Magnetometer values,
16 bit signed integers,
order x,y,-z

Table 17. Data output format for LE connections

The following table shows the 8 byte data format for indications and
notifications of the meta data (pressure, temperature and battery).

Byte * Value hex Note

0+1+2+3 0xXXXXXXXX Pressure Pascal's (pa) uint32

4+5 0xXXXX Temperature °C x10 signed int16

6+7 0xXXXX Battery mill volts uint16

Table 18. Meta data output format for LE connections

* All values are little endian i.e. Battery ...,0x40,0x10 is 0x1040 or 4.160 V

Channel Contention Issues

It is possible to set very high packet rates to the client by setting high sample
rates and this may create channel contention. Typical LE baseband controllers
have a maximum throughput of ~4 kB/s which is a 200 Hz notification rate. If
the channel becomes blocked it may not be possible to send a stop command or
clear the notification flag and in this instance it becomes necessary to cycle the
device connection to restore control.

Data Conversion

All sensors have a digital output which can be converted into SI units using
simple transforms. This section summarises these transforms.

Battery

The battery output is in millivolts and the battery used is a lithium polymer
100 mAh type. The fully charged voltage of lithium polymer cells at 25 ˚C is 4.2 V
or 4200 mV. The discharge curve of lithium batteries is non-linear and it is not
possible to linearly approximate the percentage of capacity remaining. After
3300 mV the battery is nearly depleted (see Figure 1) and the voltage will drop
rapidly, this could result in a device reset and an unexpected loss of
communication; by this point the user should be recharging the device.

Page 18 of 22 www.openmovement.co.uk

Figure 1 Typical lithium polymer battery discharge curve (Y-axis 10 hours, current = 0.1C)

Temperature

The temperature sensor is sampled every second and is expresses as a signed
16bit integer in 0.1˚C steps; Divide by 10 to convert to Celsius (SI unit).

Barometric Pressure

The pressure is expressed as a signed 32bit integer in Pascal’s (SI unit).
Conversion from Pascal’s to altitude is a complicated process involving
thermodynamic and physical models to account for the changes in density and
pressure through the atmosphere. However, a simple conversion can be
accomplished assuming typical conditions to reasonably accurately determine a
change in altitude from a given reference point at which the pressure is known
(P0). The conversion is explained here and can be summarised as:

where is the change in height, P is the pressure in Pascal’s and P0 is the
pressure at the origin (e.g. Sea level).

where R is the universal gas constant, T0 is origins temperature, g is gravity and
M is the molar mass of air (all SI units). Typically K ≃ -8434.6678

Since there is an approximate exponential relationship at moderate altitudes, a
simple exponential function can be used as described on page 16 of the
barometric pressure sensors datasheet. This approximation uses the faster
pow(x,y) function from the standard C library math.h and can be implemented to
yield the height in cm using the following example.

http://en.wikipedia.org/wiki/Atmospheric_pressure
http://ae-bst.resource.bosch.com/media/products/dokumente/bmp180/BST-BMP180-DS000-09.pdf

Page 19 of 22 www.openmovement.co.uk

Example Code 1 Converting barometric pressure to altitude (cm)

The noise from the sensor yields a noise level of ~25cm between readings (when
stationary) making the sensor less useful for small deviations.

Accelerometer

The accelerometer output is expressed as three signed 16bit integers in the
order x, y, z where the axis orientations are as follows:

Figure 2: Sensor axis orientation

The sensor measures linear acceleration in each of three axis. The accelerometer
resolution is 14 bits and is left justified in all resolution modes, this makes the
last two bits of the sensor output always zero. The range setting of the
accelerometer determines the scaling factor required to convert the integer to
standard units as described in the following table.

Range setting Convert to g Dynamic range

2 divide by 16384 +/- 2g

4 divide by 8192 +/- 4g

8 divide by 4096 +/- 8g

Table 19. Conversion of accelerometer values

The accelerometer resolution, accuracy and noise are described in the device
datasheet; some degree of calibration may be required for precision
measurements.

#include <math.h>
long CalculateAltitudeCm(long pressure, long pressure_sea_level)
{
 long altitude = 0;
 float temp1,temp2;
 temp1 = ((float)pressure)/((float)pressure_sea_level);
 temp2 = powf(temp1,0.19029495718363462); /*double*/
 temp1 = (float)4433000*(1-temp2); /*note extra zeros are for cm*/
 altitude = ((temp1 >= 0)?(long)(temp1+0.5):(long)(temp1-0.5));
 return altitude;
}

Page 20 of 22 www.openmovement.co.uk

Gyroscope

The gyroscope sensor output is expressed as three signed 16bit integers in the
order x, y, z. The orientation of the sensor axis is the same as the accelerometer
(see previous section). The output of the gyroscope is proportional to the
angular velocity around each or the axis and is usually described in degrees per
second (dps). The conversion to dps depends upon the range setting of the
sensor as summarised below:

Range setting Convert to dps Dynamic range

250 multiply by 0.00875 +/- 250 dps

500 multiply by 0.01750 +/- 500 dps

2000 multiply by 0.07000 +/- 2000 dps

Table 20. Conversion of gyroscope values

The linearity, offset and noise level of the sensor is described in the device
datasheet; some degree of calibration may be required for precision
measurements.

Magnetometer

The magnetometer sensor output is expressed as three signed 16 bit integers in
the order x, y, z. The orientation of the x and y axis are aligned to the
accelerometer and gyroscope. However, the z axis is in the opposite direction
to the other two sensors. It is simple to correct this is software by changing the
sign of the z axis output i.e. z = -z.

The output of the magnetometer sensor is the measured magnetic field in the
direction of the axis in approximately 0.1 μT steps (1 mGs, milli-gauss) and the
range of the sensor is +/- 20,000 (2 mT or 0.2 Gs). The scaling factor will vary
between devices (scaling error), the magnetometer will be influenced by
magnetised nearby materials (offset error) and the earth’s magnetic field varies
widely around the earths surface. For this reason, most magnetometer
calculations that determine heading (compass calculations) do not rely on the
absolute field strength other than to determine if the sensor is being interfered
with. For details on implementing a compass functionality the user should
investigate the many options available such as this application note which uses
the same sensor pair (both magnetometer and accelerometer).

http://cache.freescale.com/files/sensors/doc/reports_presentations/ARTICLE_REPRINT.pdf

Page 21 of 22 www.openmovement.co.uk

Upgrading Firmware

The firmware is under continual development and new updates may become
available to fix bugs or add features. This section details how to upgrade to a new
firmware using the windows PC software, a new .hex file and the micro USB
cable.

1) If you received an email of the software, the bootloader

"WAX9 Bootloader.exe" may have been renamed to "WAX9 Bootloader.bin"
to email it past virus checkers; Rename it to "WAX9 Bootloader.exe".

2) Run the software on a windows PC.
3) Plug in one device to the machine. If the batter is flat it will flash red until the

battery reaches ~10% for a few minutes. When the device stops flashing, the
bootloader will be able to discover it. It appears as a HID device to the
operating system and requires no driver.

4) Open the new .hex file using the "Open Hex File" dialogue. Select the
firmware to bootload e.g. "WAX9 bleStack FW3.2.hex"*.

5) Select "Program/Verify" and wait. The LED on the device will go red and
flicker during bootloading - do not disconnect.**

6) Reset the device using the bootloader. The device will reset and check that
the new firmware is compatible showing error codes if not. When the device
returns to the bootloader application it will be in (shipping mode).
Disconnect, wait (5 seconds) and reconnect the USB to exit shipping mode.

7) Now disconnect the device. Its default name immediately after bootloading
will be "WAX9-FFFF" where FFFF will be replaced by the hexadecimal
representation of the last 2 bytes of its Bluetooth MAC address on next reset.

* Firmware before FW3.2 did not detect the chipset used and the user had to select the correct
version. FW3.2 auto detects at runtime, however, the older cc2560 chipset does not support LE
connections and this functionality will be unavailable.
** After the process completes the verify step may report verify fails above address 0x100000, this is
ok and indicates that some of the unused data memory contained information from a previous
firmware release. A new bootloader will be available shortly to fix this issue.

Support

Please visit www.openmovement.co.uk for support contacts.

Open Source

The WAX9 sensor project is open source hardware and firmware, it could be

customised to perform other functions and be a useful addition to your project. Please

see www.openmovement.co.uk to access the source code, design files and new

firmware releases.

http://www.openmovement.co.uk/
http://www.openmovement.co.uk/

Page 22 of 22 www.openmovement.co.uk

Acknowledgments

The WAX9 uses hardware developed by the author of this document, K. Ladha,
for the Open Movement Project at Newcastle University. Packaging design and
manufacture are attributed to the work of C. Ladha and T. Nappy. Firmware uses
parts of the Open Movement framework written by D. Jackson and K. Ladha.

The WAX9 uses bleStack, an open source light weight dual mode embedded
Bluetooth stack developed by K. Ladha. The RFCOMM and SDP layers are
adapted from the code written and distributed by G. Gangolells (2012).

Disclaimers

This developer guide is provided by the copyright holders “as is” and without
guarantees or warranties and the contents may be subject to change without
warning. In addition, future or current support for the features described in this
document are not guaranteed and the copyright holder shall under no
circumstances be held liable for any direct, indirect, incidental, special,
exemplary or consequential damages resulting from the use of this document of
the hardware it describes.

References to trademarks and protocols in this document such as USB and
Bluetooth are for explanation purposes only and the copyright holder is not in
any way, whether implied or otherwise, responsible for this device failing to
comply with other third party standard. In addition, the copyright holder does
not claim any affiliation, approval or agreement with the governing bodies of the
said third parties. The WAX9 is an ongoing open source project that may
unknowingly infringe on existing licensing agreements and intellectual property.
The copyright holder offers no guarantee for the users rights to operate the
equipment, modify the source code or integrate the equipment into an
application and, as such, can not be held accountable for any losses or damages
caused as a result.

The WAX9 device is a transmitter and may be illegal to operate in some
countries, it is the users’ responsibility to check and obtain permission to use
this device where necessary. By using the WAX9 device, the user agrees to
these terms.

Revisions

2014/2/21: First release of documentation for FW3.0
2014/2/28: Firmware 3.1 fixed gyro sleep bug, added pause and play

commands to documentation
2014/3/11: Firmware 3.2 released, fixed LE UART bug, added chipset auto

detection and printout
2015/02/05

Firmware 3.3 released, stream data length threshold added to
reduce interference by reducing on-air traffic. BLE service
changed characteristic added (handle 0x0013) restoring
compatibility with existing BLE apps.

